搜索:
 
公司名称:深圳市腾远智拓电子有限公司
电话:0755-82914471
地址:深圳市龙华新区观澜大富路硅谷动力低碳产业园A5栋4楼
手机: 18124003591
联系人: 陈小姐
传真:86-0755-82914473
网址:www.tyzt.net
E-mail: 001@4008075595.com

更多>>
COFDM双向单兵无线传输设备
8公里无线监控_5.8G大功率无线网桥
50公里TDMA数字无线网桥
ST5825H远距离无线传输设备
ST5816H远距离无线传输设备
20公里远距离数字无线网桥
单兵自组网无线通信传输设备多少钱一台
高清一体化手持无线接收设备
COFDM微型无线传输设备ST9500M
新款喇叭口天线5.8G(18dBi)
电梯专用无线视频监控设备原理
30公里无人机图传+数据传输
 
Massive MIMO无线传输测试方案将成为5G的技术关键
点击次数:1459 发布时间:2017-11-11
  Massive MIMO技术,在基站收发信机上使用大数量(如64/128/256等)的阵列天线实现了更大的无线数据流量和连接可靠性。相比于以前的单/双极化天线及4/8通道天线,大规模天线技术能够通过不同的维度(空域、时域、频域、极化域等)提升频谱和能量的利用效率;3D赋形和信道预估技术可以自适应地调整各天线阵子的相位和功率,显著提高系统的波束指向准确性,将信号强度集中于特定指向区域和特定用户群,在增强用户信号的同时可以显著降低小区内自干扰、邻区干扰,是提升用户信号载干比的技术。
 
  如何评价Massive MIMO技术,采用什么样的测试指标和测试方法,怎样公平且的衡量Massive MIMO技术?这也是当前通信科技业者十分关心问题。
 
  Massive MIMO系统架构
 
  支持Massive MIMO的有源天线基站架构以三个主要功能模块为代表:射频收发单元阵列,射频分配网络和多天线阵列。
 
  射频收发单元阵列包含多个发射单元和接收单元。发射单元获得基带输入并提供射频发送输出,射频发送输出将通过射频分配网络分配到天线阵列,接收单元执行与发射单元操作相反的工作。 RDN将输出信号分配到相应天线路径和天线单元,并将天线的输入信号分配到相反的方向。
 
  RDN可包括在发射单元(或接收单元)和无源天线阵列之间简单的一对一的映射。在这种情况下,射频分配网络将是一个逻辑实体但未必是一个物理实体。
 
  天线阵列可包括各种实现和配置,如极化、空间分离等。
 
  射频收发单元阵列、射频分配网络和天线阵列的物理位置有可能不同于下图逻辑表示,取决于实现。
 
  Massive MIMO测试技术
 
  1.天线系统的演进对测试技术的挑战
 
  随着天线系统向现代化的发展,尤其是5G的演进,一体化的基站有源天线系统(AAS)形态逐渐成为主流,通道数越来越多,有源天线连接方式也会简化,RU和天线高度集成,射频指标不再局限于传统的RU传导测试,OTA测试将成为未来测试演进的方向,同时也将带来极大的测试挑战。
 
  2.测试信号调制化
 
  有源天线工作在各种业务载波状态下实现网络覆盖,为真实测试有源天线性能,测试系统需要具备以下测试能力:测试系统需求支持业务信号的幅度、相位测试。尤其是存在的大带宽信号测试;方向图测试信号模式需要讨论定义。
 
  3.天线波束多样化
 
  在天线波束辐射特性趋于复杂场景下:如何准确评估天线业务波束指向准确性、副瓣、波瓣宽度等;如何选择多波束的测试场景;多波束天线的测试效率问题;对于多波束如何通过二维的辐射特性,评估覆盖性能。
 
  测试建议:需要评估在两个主面下,有源天线尤其是Massive MIMO天线指标要求;需要研究定义3D辐射指标要求;在真实业务信号下评估多波束辐射性能,建立测试Case集。
 
  4.通信天线频段高频化
 
  高频(毫米波)覆盖一直属于业界难题,而Massive MIMO能很好解决该问题。其作为5G的扩展频段,提供容量保障。
 
  在同等数量天线单元情况下,频率越高,覆盖距离越短。高频率的毫米波在覆盖上有着天然的劣势,然而,理论上这可以通过增加天线数量来补偿。随着频段的上升,要想达到相同的覆盖距离,就需要增加天线单元数量,这意味着天线成本的上升。所以,降低天线成本成又为5G 多天线技术的关键问题之一。
 
  高频Massive MIMO天线作为5G演进关键技术之一, 几个关键特征:高频率、大带宽、超大规模阵列天线。
 
  这些关键特征对测试提出新的诉求:高频天线辐射指标重新分析定义;测试场地和仪器需支持大口径超高频天线的测试,尤其是OTA特性的测试; 测试仪表需要支持超高频、超宽带信号的测试。
 
  5.射频指标测试空口化
 
  随着天线一体化发展,尤其是Massive MIMO天线,RF传导射频指标带有辐射方向性,并且通道数量大。如何进行射频指标的测试是目前遇到的一个巨大挑战,目前均无清晰的技术途径,3GPP标准也在技术研讨中。目前方向之一是进行空口测试,但如何对这些射频指标空口性能进行定义,如何进行测试均是目前业界的难题。
 
  目前射频指标空口测试,3GPP R13标准明确定义EIRP和EIS,其他空口指标已经在zui近的RAN 计划的R14标准中立项分析。目前该部分内容目前非常复杂,各方都在研究当中,暂无明确结论如何对这些射频指标进行空口测试。
 
  目前主要分为两部分: 带内指标——目前来看,如果天线性能已知,可以通过OTA现有测试方案进行评估;带外指标——天线带外性能未知,且带外非常宽的频点对空口测试是一个巨大挑战。
 
  6.3D波束赋形特性
 
  Massive MIMO天线相对于传统天线覆盖,业务波束可能会更窄,其指向的准确性直接影响网络覆盖性能。因此其业务波束指向的准确性测试尤其重要。
 
  每一个天线阵列能分裂出几个波束也成为Massive MIMO网络覆盖性能的重要指标,在这几个波束覆盖下的用户能实现的吞吐量如何也需要成为评估的一部分。
 
  总结
 
  随着网络的持续演进,天线与射频模块将深度融合,Massive MIMO有源天线将是未来天线的发展主流。一体化测试和空口测试可能成为未来测试的演进方向。
 
  相比于传统天线和射频测试方法,测试指标以及评价体系,测试原理和方法、测试平台等都遭遇重大挑战,这些可能是移动通信系统天馈网络的重大革新,亟待我们去探索。
 
    联系我们 | 新闻中心 | 关于我们 | 后台管理 本网站所有资料及图片均归深圳市腾远智拓电子有限公司所有侵权必究
Copyright©2012 深圳市腾远智拓电子有限公司. 粤ICP备09046928号
   
联系人:陈小姐
手机:18124003591

安防展览网

推荐收藏该企业网站